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Abstract

This paper describes two methods which break the
ambiguity associated with phase determination from
one-wavelength anomalous-scattering data when the
positions of the anomalous scatterers are known. In
the Wilson-distribution method the magnitudes of the
contributions of the light atoms are found for each
of the alternative phases and the phases are then given
weights according to the usual Wilson probability
distribution for the magnitudes. In the MPS method
the two possible magnitudes of the contributions of
the light atoms to the scattering are compared with
a theoretical value based on the observed structure
magnitudes and the Fourier coefficient of the |P]
function [Hao & Woolfson (1989). Acta Cryst. A4S,
794-797]. Once again this leads to a weight for each
alternative phase. A best-estimate phase based on the
two weights is compared with true phases for two
known proteins consisting of 36 and 96 amino acid
residues respectively. It is concluded that the quality
of the phase estimates is similar to that obtained by
other previously published procedures and that the
results are much more limited by the magnitude of
the anomalous contribution and the data quality than
by the actual method used. The methods were then
applied to the smaller protein structure using calcu-
lated data both with and without added errors. It is
concluded that this common procedure for the testing
of methods must be done with great care, otherwise
unduly optimistic conclusions may be drawn.

Introduction

We consider a structure in which there are m
anomalous scatterers, whose positions are known,
and n non-anomalous scatterers in the unit cell. From
one-wavelength anomalous-scattering (OAS) data,
with known positions for the anomalous scatterers,
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there will be two possibilities for the phase, ¢’ 4d¢,
as shown in Fig. 1. The various quantities shown in
Fig. 1 are related by

|FI?=3(F P+ |F ) -|F’ (1)

and
cos(A@) =(|F'|*=|F"[)/2|FIF"|. (2)

There are various ways in which the ambiguity may
be resolved or circumvented (see, for example, Okaya,
Saito & Pepinsky, 1955; Kartha, 1961; Blow &
Rossmann, 1961; Fan, Han, Qian & Yao, 1984). Other
work, which is related to our approach but different
in substance, has been done by Wang (1985), who
has not so much resolved the ambiguity as solved
structures despite the ambiguity by his solvent-flat-
tening technique, and by Karle (1985) who has taken

real
axis

Fig. 1. The following contributions to the scattering are shown:
|F*|, |F~| the observed structure amplitudes of a Friedel pair;
|F"| the imaginary part of the contribution of the anomalous
scatterers; | F| the real part of the scattering from all scatterers;
|F,| the total real part of scattering from the anomalous scat-
terers; | F; |, | F,,| the possible contributions of the light atoms.
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the positions of anomalous scatterers as unknown
and has found phases relative to the phases of the
contributions of the anomalous scatterers. The two
new methods described here are related to the idea
introduced by Kartha (1961) in which he suggested
calculating a Fourier summation in which both
possibilities for the phase were included. The density
map which results is

pp(r) =V~ 4:. {IF(h)|[cos {27h.r—(¢'+ 4¢)}

+cos{2mh.r—(¢' —4¢)}}}. (3)

While both terms have equal weight, the correct set
of terms should show the structure while the incorrect
terms just contribute to a background noise. We have
taken this idea one step forward by estimating weights
to be associated with the alternative phases. Inclusion
of these in the summation gives

pu(r)=V" % {IF(M)I[W™ cos {2mh .1—(¢'+ Ap)}

+ W cos{2mh.r—(¢'—4¢)}1} (4)
where
W+ w=1. (S)
From (4) and (5) we find
pu(r)=V~" Zhl [F(h)|[(1-2W")*sin® (4¢)

+cos’ (4¢)]"*cos {27h.r— (o' +8)} (6)

where
tan (8) =(1-2W7)sin (4¢)/cos (4¢p). 7

A sensible weighting scheme is one in which the
signal-to-noise ratio is increased; the two methods
we now describe differ only in the way the weights
are calculated.

Theory
1. The Wilson-distribution method

It is evident from Fig. 1 that, after subtracting the
scattering from all anomalous scatterers from the total
scattering, there are two possible values for the magni-
tude of the structure factor, |F,| and |F,,|, for the
remaining (and unknown) part of the structure. If the
composition of the structure is known then Wilson
statistics can be applied to the unknown part of the
structure to give the relative probabilities of | F, ;| and
| FL|. The required Wilson distributions are

P(|F))=(1/27X)"*exp (-|F|*/2X) (8)
fOI‘ a centric structure and

P(|F|)=(2/3)|F| exp (-|F*/ X) 9)
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for an acentric structure, where

N
z =j§lfj2. (10)
Therefore we can assign the following weights:
P(+4¢)=W"=P(|F.\)/ P(|Fu|) + P(|F]) (11)
and
P(-4¢)= W™ = P(|FL])/ P(|FL|) + P(|FL,]). (12)

2. The MPS method

This method estimates the magnitudes of the struc-
ture factors for the unknown part of the structure and
compares the estimate with the values of |F;,| and
t F1o|. For a structure with only one type of anomalous
scatterer, it is then possible to calculate an antisym-
metric map, the P, map (Okaya, Saito & Pepinsky,
1955; Hao & Woolfson, 1989), which shows positive
peaks for vectors from anomalous scatterers to non-
anomalous scatterers and negative peaks in the
reverse direction. If we now consider the |P,| map,
then this will give positive peaks for vectors in both
directions and by Fourier transformation we can find
the Fourier coefficients of this map, x(h).

A Patterson map with Fourier coefficients | F|* (see
Fig. 1) would show interatomic vectors between all
atoms, while the Patterson map calculated with
coefficients |F,|* (see Fig. 1) would give vectors
between anomalous scatterers only. It is clear that

vectors between non-anomalous scatterers only
= vectors between all atoms
—vectors between anomalous scatterers only
—vectors between anomalous and
non-anomalous scatterers

which leads to
[Fe(h)|* = |F(h)*~|F,|* - kx(h). (13)

The constant k is a scale factor which will be discussed
later. The only failure in this reasoning is that the P,
map, and therefore also the |P,| map, is affected by
density cancellation where positive and negative
peaks overlap so that (13) is not precisely true.
However, disregarding this source of error, |F;| can
be compared to |F;,| and |F,,| and weights deduced
as follows, where it is assumed that |F,,|> | F,|.

W= (|FL|_|FL2|)/(2|FL| —IFLll_IFL2’)
for |Fp,|>|Fy| or |F.|>|Fy,|
W+=(|FLI_IFL2|)/(|FL1|—lFLZI)
for |Fpy|>|F|>|Fy, (14)
with W™ =1- W™,
To obtain a valid estimate for |F,| the Fourier
coefficients y(h) need to be on the same scale as the

.observed data. Since the | P,| map is centrosymmetric



A. C. RALPH AND M. M. WOOLFSON

Table 1. Details of test structures

APP RNA
Space group 2 P2,2,2,
Number of molecules/ 1 2
asymmetric unit
Number of amino acid 36 96
residues/asymmetric unit
Type of anomalous Hg Pt
scatterer
Effective number of 2 6
asymmetric units/unit cell
Resolution of data (A) 2:0 2-5
Number of independent 2109 7009
reflections
Cell dimensions (A, °) a 3418 64-90
3292 78:32
c 28-44 38-79
B 105-3

then its Fourier coefficients are real and the scale
factor may be calculated from

K=Y 5 fAfi+f) /W (15)

i=1 j=1
where f; is the real part of the anomalous scattering.
This scale factor gives k’x2 the correct theoretical
value.

Results

Both methods were tested on two proteins, APP
(Glover et al, 1985) and RNA (Dodson, Sevcik,
Dodson & Zelinka, 1987); details of these structures
are given in Table 1. APP is a small protein with a
strong anomalous signal from mercury. RNA is a
larger protein with 20 anomalous-scatterer sites but
with only partial occupancy so that there is roughly
the equivalent of six Pt atoms per unit cell. The data
for both structures are of good quality as judged by
the normal standards of protein crystallography.
The results for both methods and for both structures
with observed data are given in Table 2. The reflec-
tions are put in order of | F| with the largest magnitude
at the top. Not all the reflections are tabulated since,
due to observational errors, some of them will have
indicated negative | F|* [see (1)]. The cumulative mean
phase error and the cumulative weighted mean phase
error are given where the weights, R, associated with
the overall phase estimates, ¢’ + 8, are calculated from

R*=(1-2W7)*sin’ (A¢)+cos’ (4¢). (16)

This weighting scheme has the reasonable property
that if A¢ =0 then any value of W™ will give R=1
since there is no uncertainty in the phase. On the
other hand, if |A¢| is large then the weight is a
maximum for W~ equal to 0 or 1 which means that
a definite choice of alternatives has been made.
Finally it should be noted that 0 < R <1 for all values
of A and W~

Both methods give similar results for APP and also
for RNA. However, while the phases for APP could
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Table 2. Wilson-distribution method (left) and the
MPS method (right) tested on observed APP and RNA
data

REFL: number of reflections in group; | F|: mean |F| [see (1)] in
the range; ME: mean phase error (°); WME: weighted mean phase
error (°).

REFL |F] ME WME ME WME
APP
100 450 48-64 47-58 41-24 39-22
200 323 43-50 42-45 35-84 34-40
300 275 41-44 40-53 35-42 32-54
400 237 41-90 40-59 36-67 34-33
500 213 43-34 42-04 37-20 33-99
600 194 42:65 41-40 37-46 34-03
700 178 44-04 42-61 38-80 35-60
800 165 44-06 42-46 39-49 35-92
900 154 44-00 4235 39-83 36:34
1000 141 43-88 42-30 40-68 36-65
1100 129 44-44 4276 41-21 37-33
1200 120 4418 42-51 4130 37-16
1300 111 43-48 41-77 41-24 37-11
1400 103 43-64 41-67 42-32 3830
1500 92 43-46 41-48 42-22 38-44
1600 83 43-77 41-50 42-19 38-56
1700 73 43-33 41-03 42-14 38-65
1800 62 43-51 41-05 42:43 39-32
1900 50 43-73 40-97 42:94 40-21
2000 35 43-79 40-81 43-20 40-21
2058 16 43-89 40-88 43-63 41-54
RNA

500 750 56-55 54-76 6372 61:25
1000 545 59-46 57-96 66-22 63-74
1500 460 60-37 59-07 66-00 63:16
2000 400 6163 60-39 66-16 63-58
2500 354 63:25 62-06 66-97 64:79
3000 315 64-65 63-51 68-30 66-50
3500 279 65-52 64-48 69-34 67-60
4000 246 66-76 65-73 70-24 68-55
4500 216 67-87 66-80 70-94 69-75
5000 188 69-32 6822 72-41 71-65
5500 160 70-31 69-15 73-82 73-14
6000 133 71-57 70-37 75-00 74-62
6500 102 7263 71-35 76:11 76-06
7000 57 73-94 72-55 77-55 77-87
7002 6 7394 72-56 77-55 77-87

be used to produce an interpretable map (similar in
quality to Figs. | and 2 of Hao & Woolfson, 1989),
the same is not true for RNA. For the latter structure,
with a weaker signal, the weights W" and W~ tend
towards 0-5 - which is the Kartha approach. For a
weak anomalous signal these methods add very little
new information; this is also apparent in Table 2
where it can be seen that the weighted mean errors
are very little different from the mean phase error for
RNA.

Tests with calculated data

Very often a published account of a new method will
illustrate its application using calculated data, some-
times with random errors superimposed to simulate
real data. It occurred to us to test the validity of this
approach and we decided to use the Wilson-distribu-
tion method and the structure APP for this purpose.

For the first trials we took (i) error-free calculated
data and (ii) calculated data with a correct value for
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Table 3. Wilson-distribution method tested with calcu-
lated APP data (left) and calculated APP data with
10% error on {|F"*|+|F~|}/2-0 (right)

REFL: number of reflections in group; |F|: mean |F| [see (1)] in
the range; ME: mean phase error (°); WME: weighted mean phase
error (°).

REFL |F| ME WME | F) ME WME
100 554 13-87 12:36 562 23-28 22:30
200 360 13-23 11-23 365 23-40 22:18
300 304 1207 10-27 306 22:81 21-62
400 270 10-45 8-83 268 22:46 21-27
500 245 1218 10-16 241 22:26 20-97
600 222 11-05 922 219 22-89 21-45
700 203 11-44 9-39 205 23-33 21-70
800 188 11-72 9-57 187 24-33 22-49
900 173 11-83 9-64 174 2409 2227

1000 160 12-41 9-94 160 24-21 22-33
1100 146 12-57 10-06 149 2419 22-29
1200 135 13-02 10-38 138 24-82 2266
1300 125 13-66 1091 127 25-59 23-37
1400 116 14-56 11-59 116 25-89 23-63
1500 106 15-02 11-93 107 2672 24-34
1600 96 16-26 1289 96 2712 24-61
1700 84 17-56 13-82 85 2774 25-10
1800 1A 18-58 14-45 74 28-39 25-47
1900 59 19-41 1497 61 2909 25-99
2000 44 20-53 15-76 48 29-89 26-60
2100 24 2268 1718 27 31-65 27-78
2106 3 22:79 17-26 4 3176 27-86

the anomalous difference AF =|F*|~|F~| but with a
random error applied to the mean magnitude (|F*|+
|F~|)/2. The error was applied in the form of a factor
€ drawn from a normal distribution of unit mean and
standard deviation, o, equal to 0-1. The results are
shown in Table 3 and it is clear that they are both
much better than those obtained from real data.
For our next trial we used a more complicated form
of error based on the realistic scenario that both a
peak height and a background are measured. We
chose the same average background intensity, B, for
all reflections and produced theoretical peak heights
|F=|F"[*+B 0
IFol =1+ B )

The randomizing procedure previously described was
used with a o of 0-2 for B, |F,|’ and |F,|*, except
for the centric reflections which were changed
together to maintain equal magnitude. Error-trans-
formed values for the structure amplitudes and the
anomalous differences can now be obtained from

|F+|:= {lF;‘Q_ BI}I/Z
|F—|1___ {IF;|72_ Bu}l/Z
AF'=|F*|~|F|

(18)

where B’ and B” are the two randomized values of
B. The results of this calculation are shown in Table
4 and it will be seen that they are similar in overall
quality to those obtained with the observed data.

THE APPLICATION OF ONE-WAVELENGTH ANOMALOUS SCATTERING. III

Table 4. Wilson-distribution method tested on calcu-
lated APP data with separate errors applied to each
intensity and background (see text)

REFL: number of reflections in group; | F|: mean |F| [see (1)] in
the range; ME: mean phase error (°); WME: weighted mean phase
error (°).

REFL | F ME WME
100 556 49-03 47-51
200 363 45-85 4375
300 303 4419 42-11
400 269 45-30 43-07
500 242 43-82 41-87
600 220 4319 41-05
700 202 4228 40-06
800 187 41-66 39-39
900 172 41-87 39-20

1000 159 4136 38-72
1100 147 41-56 38-64
1200 135 41-03 38-13
1300 125 40-92 37.93
1400 115 40-87 37-87
1500 105 41-15 37.99
1600 95 4176 38-34
1700 83 4201 38-42
1800 7 42:27 38-48
1900 58 42-48 3857
2000 4 42:55 38-64
2100 23 4374 39-39
2103 4 43-74 39-40
Discussion

Two new methods have been explored for breaking
the phase ambiguity which arises from the use of
OAS data. The results for APP give a clear indication
that the methods would probably work for small
proteins with strong anomalous scatterers like
mercury or platinum. However, we have included the
results from the RNA data to show that these methods
have quite distinct limitations. We believe that the
limitation is not so much in the size of the structure
but in the relative contributions to the intensity of
anomalous and non-anomalous scattering. This can
be defined as
R=S{S+DP+SIP=FB/TF (19)
1 J
where f, f' and f" are the normal scattering factor
and the real and imaginary parts of the anomalous

- contribution to the scattering factor respectively; the

summation over i is for anomalous scatterers only
and that over j is for all atoms. The value of R is
about 0-023 for APP and 0-0016 for RNA, the latter
value obviously being too low for either of our
methods to give worthwhile results. An intermediate
situation has been investigated by Karle (1985), who
obtained good results from his method with calcu-
lated data and also calculated data with imposed
errors for cytochrome ¢ 550 with one Pt atom in the
asymmetric unit, which gave a value of # about 0-008.
We would estimate that for observed data a value of
R below about 0-004-0-005 would not be expected
to yield useful results for either of the methods we
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describe here and possibly with the majority of other ' say, zero to three in these quantities. However, for

methods to be found in the literature.

The results are very similar to those for direct
methods (Fan et al., 1984), the P,-function method
(Hao & Woolfson, 1989) and the analytical method
(Fan, Hao & Woolfson, 1990). This really raises the
question whether the errors from the various methods
are highly correlated with respect to individual reflec-
tions. If the correlation was low and the weighting
schemes were sensible then it should be possible to
produce a better answer than that from any single
method by combining the results from all the
methods. Our experiments in this direction show that
it is indeed possible to produce a better resuit from
pairs of methods, or even from triplets, but combining
results from any more than three methods produces
no gain. We suspect that each of the five methods we
have explored in our laboratories in Beijing and York
are exploiting the information from OAS in approxi-
mately equivalent ways and so are giving similar
results. A related conclusion is that it would probably
not be productive to look for even more methods of
similar type for exploiting OAS data, although we do
not discount the possibility that more sophisticated
approaches may be more successful.

Finally, we point out from the results in Table 3
that it may be rather misleading to assess the practical
effectiveness of procedures by using only calculated
data sets - even those with added errors if the error
simulation is not done realistically. The virtue of using
calculated data is that they reveal the intrinsic proper-
ties of the method without the complication of errors
in the data which will vary from one experimenter to
another and with the technique of data collection.
However, error-free data do not exist and errors do
not occur in convenient ways. Methods like the Pi-
function method, which use values of | F(h)| —|F(h)],
can comfortably tolerate random errors of factors of,

Acta Cryst. (1991). A47, 537-543

real observed data, the error factors can be much
higher and even the sign will be wrong for some of
the anomalous differences. Whether or not any par-
ticular method will work with real data is not easy
to predict. However, since there are very few
occasions when real observed data cannot be used,
we would advocate their use whenever possible. If
this is not possible then, as can be seen from Table
4, it is possible to simulate errors in a more compli-
cated way that gives data with characteristics compar-
able to those of observed data - including giving
anomalous differences with the wrong sign.

We thank Hao Quan for providing the x(h) Fourier
coefficients from the |P,| map and also Eleanor
Dodson for the FFT routine. Finally we are grateful
to the Science and Engineering Research Council for
its generous support.
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Abstract

By use of appropriate algebraic formulas, illustrations
are given of several characteristics of one-wavelength
anomalous-dispersion data, for the case that one
predominant type of anomalous-scattering atom is

0108-7673/91/050537-07803.00

present. It is shown that, when the structure of the
anomalous scatterer is known, some simple algebraic
formulas may be used to generate initial values of
many phases associated with a macromolecular struc-
ture. In some cases, there may be enough phases
determined to permit further refinement and
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