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Abstract 

This paper  describes two methods which break the 
ambigui ty  associated with phase determinat ion from 
one-wavelength anomalous-scat ter ing data when the 
positions of  the anomalous  scatterers are known. In 
the Wilson-distr ibut ion method the magni tudes  of the 
contr ibut ions of the light atoms are found for each 
of the alternative phases and the phases are then given 
weights according to the usual Wilson probabi l i ty  
distr ibution for the magnitudes.  In the MPS method 
the two possible magni tudes  of the contr ibut ions of 
the light atoms to the scattering are compared  with 
a theoretical value based on the observed structure 
magni tudes  and the Fourier  coefficient of  the I P~I 
function [Hao & Wooifson (1989). Acta Cryst. A45, 
794-797]. Once again this leads to a weight for each 
alternative phase. A best-estimate phase based on the 
two weights is compared  with true phases for two 
known proteins consisting of 36 and 96 amino  acid 
residues respectively. It is concluded that the quality 
of the phase estimates is s imilar  to that obtained by 
other previously publ i shed  procedures and that the 
results are much more l imited by the magni tude  of 
the anomalous  contr ibut ion and the data quali ty than 
by the actual method used. The methods were then 
appl ied to the smaller  protein structure using calcu- 
lated data both with and without added errors. It is 
concluded that this common  procedure for the testing 
of methods must be done with great care, otherwise 
unduly optimistic conclusions may be drawn. 

Introduction 

We consider  a structure in which there are m 
anomalous  scatterers, whose positions are known, 
and n non-anomalous  scatterers in the unit cell. From 
one-wavelength anomalous-scat ter ing (OAS) data, 
with known positions for the anomalous  scatterers, 

there will be two possibil i t ies for the phase,  ~ ' +  A~, 
as shown in Fig. 1. The various quanti t ies shown in 
Fig. 1 are related by 

IFI ~ = -)(I F+I ~ + I F - I b -  I F" l  ~ (1)  

and 

cos(a¢)=(IF~l~-IF-12)/21FIIF"l. (2) 
There are various ways in which the ambigui ty  may 

be resolved or c i rcumvented (see, for example,  Okaya,  
Saito & Pepinsky,  1955; Kartha,  1961; Blow & 
Rossmann,  1961; Fan, Han,  Qian & Yao, 1984). Other 
work, which is related to our approach  but different 
in substance,  has been done by Wang (1985), who 
has not so much resolved the ambigui ty  as solved 
structures despite the ambigui ty  by his solvent-flat- 
tening technique,  and by Karle (1985) who has taken 
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IFi 
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ax is  

Fig. 1. The following contributions to the scattering are shown: 
IF+l, IF-I the observed structure amplitudes of a Friedel pair; 
I F"I the imaginary part of the contribution of the anomalous 
scatterers; I FI the real part of the scattering from all scatterers; 
IF, I the total real part of scattering from the anomalous scat- 
terers; IF,,I, IFt21 the possible contributions of the light atoms. 
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the positions of anomalous scatterers as unknown 
and has found phases relative to the phases of the 
contributions of the anomalous scatterers. The two 
new methods described here are related to the idea 
introduced by Kartha (1961) in which he suggested 
calculating a Fourier summation in which both 
possibilities for the phase were included. The density 
map which results is 

o h ( r )  = V-'Y {IF(h)l[cos {2~rh. r -  (¢ '+ A¢)} 
h 

+cos {27rh. r -  (~p'- g~p)}]}. (3) 

While both terms have equal weight, the correct set 
of terms should show the structure while the incorrect 
terms just contribute to a background noise. We have 
taken this idea one step forward by estimating weights 
to be associated with the alternative phases. Inclusion 
of these in the summation gives 

pw(r) = V - ' Z  {IF(h)l[ W + cos {27rh. r -  (q~'+A~p)} 
h 

+ W-cos  {2¢rh. r -  (q~'- Aq~)}]} (4) 

where 

w++ W-=l. (5) 

From (4) and (5) we find 

ow(r) = V-'Y. IF(h)l[( l  - 2  W-)  2 sin 2 (A~p) 
h 

+cos 2 (A~p)] ~/2 cos {2rrh. r - (~p '+  6)} 

where 

(6) 

tan (6) = (1 - 2 W-) sin (A~)/cos (A~). (7) 

A sensible weighting scheme is one in which the 
signal-to-noise ratio is increased; the two methods 
we now describe differ only in the way the weights 
are calculated. 

Theory 

1. The Wilson-distribution method 

It is evident from Fig. 1 that, after subtracting the 
scattering from all anomalous scatterers from the total 
scattering, there are two possible values for the magni- 
tude of the structure factor, IFL,I and 1F£21, for the 
remaining (and unknown) part of the structure. If the 
composition of the structure is known then Wilson 
statistics can be applied to the unknown part of the 
structure to give the relative probabilities of JELl[ and 
I Fm[. The required Wilson distributions are 

P(IFI)=(1/2rr.Y,) '/2 exp(-IFI2/2.,Y,) (8) 

for a centric structure and 

P(IFI) = (2/.Y, )IFI exp ( - IFI2/Z)  (9) 

for an acentric structure, where 

N 

-'Y = E f2. (10) 
j = !  

Therefore we can assign the following weights: 

p(+Aq~)= W+= p(IF,_,I)/P(IF,_,I)+P(IFL21) (11) 

and 

P(-A~o)= W - =  P(IFt.21)/P(IF£,I)+P(IFL21). (12) 

2. The MPS method 

This method estimates the magnitudes of the struc- 
ture factors for the unknown part of the structure and 
compares the estimate with the values of IFL,I and 
tF£21. For a structure with only one type of anomalous 
scatterer, it is then possible to calculate an antisym- 
metric map, the P, map (Okaya, Saito & Pepinsky, 
1955; Hao & Woolfson, 1989), which shows positive 
peaks for vectors from anomalous scatterers to non- 
anomalous scatterers and negative peaks in the 
reverse direction. If we now consider the IP~I map, 
then this will give positive peaks for vectors in both 
directions and by Fourier transformation we can find 
the Fourier coefficients of this map, g(h). 

A Patterson map with Fourier coefficients IF] 2 (see 
Fig. 1) would show interatomic vectors between all 
atoms, while the Patterson map calculated with 
coefficients IF,,] 2 (see Fig. 1) would give vectors 
between anomalous scatterers only. It is clear that 

vectors between non-anomalous scatterers only 
= vectors between all atoms 

-vectors  between anomalous scatterers only 
- v e c t o r s  between anomalous and 

non-anomalous scatterers 

which leads to 

[FL(h)[2=lF(h)]2-1Fal2-kx(h). (13) 

The constant k is a scale factor which will be discussed 
later. The only failure in this reasoning is that the P~ 
map, and therefore also the IP~I map, is affected by 
density cancellation where positive and negative 
peaks overlap so that (13) is not precisely true. 
However, disregarding this source of error, led can 
be compared to If~,l and IF,21 and weights deduced 
as follows, where it is assumed that ]Ft_ll > ]FL21. 

w ÷ -- ( I F d -  IF,.2I)/(21F~I- IF~ , I -  I FL~I) 

for IF~21 > IFd or IF~I > IF~,I 

w + = (I F d -  I F~:I)/(I F L , I -  I F~:I) 

for IFLII>IF£I>IFml (14) 

with W - = I - W  ÷. 
To obtain a valid estimate for [FLI the Fourier 

coefficients x(h) need to be on the same scale as the 
.observed data. Since the [P~[ map is centrosymmetric 
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Table  1. Details o f  test structures 

A P P  R N A  

Space group C2 P2t212t 
Number of molecules/ 1 2 

asymmetric unit 
Number of amino acid 36 96 

residues/asymmetric unit 
Type of anomalous Hg Pt 

scatterer 
Effective number of 2 6 

asymmetric uni ts /uni t  cell 
Resolution of data (A) 2.0 2-5 
Number of independent 2109 7009 

reflections 
Cell dimensions (A,, °) a 34.18 64.90 

b 32-92 78.32 
c 28.44 38.79 
13 105.3 

then its Fourier  coefficients are real and the scale 
factor may be calculated from 

i = l  j = l  

where f ;  is the real part of  the anomalous  scattering. 
This scale factor gives k2x --~ the correct theoretical 
value. 

Results 

Both methods  were tested on two proteins, APP 
(Glover et al., 1985) and R N A  (Dodson,  Sevcik, 
Dodson & Zelinka,  1987); details of  these structures 
are given in Table 1. APP is a small  protein with a 
strong anomalous  signal from mercury. R N A  is a 
larger protein with 20 anomalous-scat terer  sites but 
with only partial  occupancy so that there is roughly 
the equivalent  of  six Pt atoms per unit  cell. The data 
for both structures are of  good quality as judged  by 
the normal  s tandards of  protein crystallography. 

The results for both methods  and for both structures 
with observed data are given in Table 2. The reflec- 
tions are put in order of  lFI with the largest magni tude  
at the top. Not all the reflections are tabulated since, 
due to observational  errors, some of them will have 
indicated negative I F[ 2 [see (1)]. The cumulat ive mean 
phase error and the cumulat ive  weighted mean  phase 
error are given where the weights, R, associated with 
the overall phase estimates, q~'+ ~, are calculated from 

R2 = (1 - 2 W-)2 sin2 (A¢) + cos2 (A~). (16) 

This weighting scheme has the reasonable  property 
that if  Aq~ = 0 then any value of W-  will give R = 1 
since there is no uncertainty in the phase. On the 
other hand,  if  IA~I is large then the weight is a 
m a x i m u m  for W-  equal  to 0 or 1 which means  that 
a definite choice of alternatives has been made. 
Final ly  it should be noted that 0 <- R <- 1 for all values 
of  A~ and W-.  

Both methods give s imilar  results for APP and also 
for RNA. However, while the phases for APP could 

Table 2. Wilson-distribution method (left) and the 
MPS  method (right) tested on observed A P P  and R N A  

data 

R E F L :  n u m b e r  o f  ref lec t ions  in  g r o u p ;  IFI" m e a n  IFI [see (11] in 
the  r ange ;  M E :  m e a n  phase  e r ror  (o); W M E :  we igh t ed  m e a n  phase  
error (o). 

R E F L  IF] M E  W M E  M E  W M E  

A P P  

100 450 48-64 47.58 41-24 39-22 
200 323 43.50 42"45 35-84 34.40 
300 275 41.44 40.53 35.42 32.54 
400 237 41"90 40-59 36-67 34.33 
500 213 43-34 42.04 37-20 33"99 
600 194 42'65 41.40 37'46 34.03 
700 178 44.04 42"61 38'80 35-60 
800 165 44"06 42'46 39-49 35.92 
900 154 44.00 42-35 39'83 36'34 

1000 141 43"88 42'30 40"68 36-65 
I100 129 44.44 42.76 41.21 37-33 
1200 120 44.18 42-51 41.30 37"16 
1300 111 43.48 41.77 41.24 37-11 
1400 103 43-64 41.67 42"32 38"30 
1500 92 43'46 41.48 42-22 38-44 
1600 83 43.77 41.50 42'19 38'56 
1700 73 43.33 41.03 42.14 38"65 
1800 62 43-51 41-05 42.43 39'32 
1900 50 43.73 40-97 42'94 40.21 
2000 35 43-79 40'81 43"20 40-21 
2058 16 43.89 40.88 43.63 41.54 

R N A  

500 750 56.55 54.76 63.72 61.25 
1000 545 59.46 57.96 66.22 63-74 
1500 460 60.37 59.07 66.00 63.16 
2000 400 61.63 60.39 66-16 63.58 
2500 354 63.25 62.06 66.97 64.79 
3000 315 64-65 63.51 68.30 66-50 
3500 279 65.52 64.48 69.34 67.60 
4000 246 66.76 65-73 70.24 68-55 
4500 216 67-87 66-80 70.94 69-75 
5000 188 69.32 68.22 72.41 71.65 
5500 160 70.31 69-15 73.82 73.14 
6000 133 71-57 70.37 75-0(I 74.62 
6500 102 72-63 71.35 76.11 76.06 
7000 57 73.94 72-55 77-55 77-87 
7002 6 73.94 72.56 77.55 77.87 

be used to produce an interpretable map (similar  in 
quali ty to Figs. 1 and 2 of  Hao & Woolfson,  1989), 
the same is not true for RNA. For the latter structure, 
with a weaker signal, the weights W ÷ and W-  tend 
towards 0 . 5 -  which is the Kar tha  approach.  For a 
weak anomalous  signal these methods add very little 
new informat ion;  this is also apparent  in Table 2 
where it can be seen that the weighted mean  errors 
are very little different from the mean phase error for 
RNA. 

Tests with calculated data 

Very often a publ ished account  of  a new method will 
illustrate its appl icat ion using calculated data, some- 
times with random errors super imposed  to s imulate  
real data. It occurred to us to test the validity of this 
approach and we decided to use the Wilson-distr ibu- 
tion method and the structure APP for this purpose. 

For the first trials we took (i) error-free calculated 
data and (ii) calculated data with a correct value for 
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Table 3. Wilson-distribution method tested with calcu- 
lated APP data (left) and calculated APP data with 

10% error on {IF+I+IF-[}/2.0 (right) 

REFL: number of reflections in group; t,el: mean IFI [see (1)] in 
the range; ME: mean phase error (°); WME: weighted mean phase 
error (°). 

R E F L  1/~1 M E  W M E  I F  I M E  W M E  

100 554 13.87 12.36 562 23.28 22.30 
200 360 13.23 11.23 365 23.40 22.18 
300 304 12.07 10.27 306 22.81 21 "62 
400 270 10.45 8"83 268 22"46 21 "27 
500 245 12.18 10.16 241 22"26 20"97 
600 222 11.05 9"22 219 22"89 21 "45 
700 203 11.44 9"39 205 23.33 21-70 
800 188 11-72 9"57 187 24.33 22-49 
900 173 11"83 9-64 174 24.09 22"27 

1000 160 12-41 9"94 160 24.21 22.33 
1100 146 12-57 10.06 149 24.19 22-29 
1200 135 13.02 10.38 138 24"82 22"66 
1300 125 13.66 10.91 127 25-59 23.37 
1400 116 14.56 11 "59 116 25.89 23-63 
1500 106 15"02 11"93 107 26"72 24"34 
1600 96 16.26 12"89 96 27.12 24.61 
1700 84 17"56 13"82 85 27.74 25"10 
1800 71 18.58 14"45 74 28"39 25.47 
1900 59 19.41 14.97 61 29"09 25-99 
2000 44 20.53 15"76 48 29-89 26"60 
2100 24 22.68 17"18 27 31"65 27"78 
2106 3 22-79 17'26 4 31.76 27-86 

Table 4. Wilson-distribution method tested on calcu- 
lated APP data with separate errors applied to each 

intensity and background (see text) 

R E F L :  n u m b e r  o f  ref lec t ions  in  g r o u p ;  IF[: m e a n  IF] [see (1)] in 
the  range ;  M E :  m e a n  phase  e r ro r  (°); W M E :  we igh ted  m e a n  pha se  
e r ror  (o). 

R E F L  IFI M E  W M E  

100 556 49.03 47.51 
200 363 45.85 43.75 
300 303 44.19 42. I 1 
400 269 45.30 43.07 
500 242 43.82 41.87 
600 220 43-19 41.05 
700 202 42.28 40.06 
800 187 41.66 39.39 
900 172 41.87 39.20 

1000 159 41 '36 38-72 
1100 147 41 "56 38"64 
1200 135 41"03 38"13 
1300 125 40-92 37"93 
1400 115 40"87 37"87 
1500 105 41" 15 37"99 
1600 95 41 '76 38"34 
1700 83 42"01 38"42 
1800 71 42" 27 38"48 
1900 58 42"48 38"57 
2000 44 42"55 38"64 
2100 23 43" 74 39" 39 
2103 4 43-74 39'40 

the anomalous  d i f f e r e n c e / i F  = IF ÷1 - ] F - I  but with a 
random error appl ied  to the mean  magni tude  (IF÷l + 
IF- l ) /2 .  The error was appl ied  in the form of  a factor 
e drawn from a normal  distr ibut ion of  unit  mean  and 
s tandard deviation,  tr, equal  to 0.1. The results are 
shown in Table  3 and it is clear that they are both 
much  better than those obta ined from real data. 

For our next trial we used a more complicated form 
of  error based on the realistic scenario that both a 
peak height  and a background  are measured.  We 
chose the same average background intensity, B, for 
all reflections and produced theoretical peak heights 

IF;12 = IF+l 2 + n 

IF ; I  2 = IF-I  = + B. 
(17) 

The randomiz ing  procedure  previously described was 
used with a o- of  0.2 for B, IFpl 2 and IF~-I 2, except 
for the centric reflections which were c h a n g e d  
together to main ta in  equal  magnitude.  Error-trans- 
formed values for the structure ampl i tudes  and the 
anomalous  differences can now be obtained from 

IF+I'  = {IF~I ' 2 -  B'} ' /2  

IF-I'  = {IF;I  ' 2 -  B"}'/2 
a F ' = l f + l ' - I F - I  ' 

(18) 

where B' and B" are the two randomized  values of  
B. The results of  this calculat ion are shown in Table 
4 and it will be seen that they are s imilar  in overall 
quali ty to those obta ined with the observed data. 

Discussion 

Two new methods  have been explored for breaking 
the phase ambigui ty  which arises from the use of 
OAS data. The results for APP give a clear indicat ion 
that the methods  would probably  work for small  
proteins with strong anomalous  scatterers like 
mercury or pla t inum. However,  we have inc luded the 
results from the R N A  data to show that these methods  
have quite distinct l imitations.  We believe that the 
l imitat ion is not so much  in the size of  the structure 
but in the relative contr ibut ions to the intensi ty of  
anomalous  and non-anomalous  scattering. This can 
be defined as 

~=~ {(fi+f~)2+(f[')2--f2i}/~f~ (19) 
i j 

where f, f '  and f "  are the normal  scattering factor 
and the real and imaginary  parts of  the anomalous  
contr ibut ion to the scattering factor respectively; the 
summat ion  over i is for anomalous  scatterers only 
and that over j is for all atoms. The value of  ~ is 
about  0.023 for APP and 0-0016 for RNA, the latter 
value obviously being too low for either of  our 
methods  to give worthwhile  results. An intermediate  
si tuation has been investigated by Karle (1985), who 
obta ined good results from his method with calcu- 
lated data and also calculated data with imposed 
errors for cytochrome c 550 with one Pt atom in the 
asymmetr ic  unit, which gave a value o f ~  about  0.008. 
We would estimate that for observed data a value of  

below about  0-004-0.005 would not be expected 
to yield useful results for either of  the methods  we 
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describe here and possibly with the majori ty of other ' 
methods to be found in the literature. 

The results are very s imilar  to those for direct 
methods (Fan et al., 1984), the P~-function method 
(Hao & Woolfson,  1989) and the analytical  method 
(Fan,  Hao & Woolfson,  1990). This really raises the 
question whether  the errors from the various methods 
are highly correlated with respect to individual  reflec- 
tions. If the correlation was low and the weighting 
schemes were sensible then it should be possible to 
produce a better answer than that from any single 
method by combin ing  the results from all the 
methods.  Our experiments  in this direction show that 
it is indeed possible to produce a better result from 
pairs of  methods,  or even from triplets, but combin ing  
results from any more than three methods produces 
no gain. We suspect that each of the five methods we 
have explored in our laboratories in Beijing and York 
are exploit ing the informat ion from OAS in approxi-  
mately equivalent  ways and so are giving s imilar  
results. A related conclusion is that it would probably  
not be productive to look for even more methods of 
s imilar  type for exploit ing OAS data, a l though we do 
not discount  the possibil i ty that more sophist icated 
approaches  may be more successful. 

Finally,  we point  out from the results in Table 3 
that it may be rather mis leading  to assess the practical 
effectiveness of  procedures by using only calculated 
data se t s -  even those with added errors if  the error 
s imulat ion is not done realistically. The virtue of  using 
calculated data is that they reveal the intrinsic proper- 
ties of  the method without the complicat ion of  errors 
in the data which will vary from one exper imenter  to 
another  and with the technique of data collection. 
However, error-free data do not exist and errors do 
not occur in convenient  ways. Methods like the Ps- 
funct ion method,  which use values of  IF(h)l- IF(h)l, 
can comfortably  tolerate random errors of  factors of, 

say, zero to three in these quantities.  However, for 
real observed data, the error factors can be much 
higher and even the sign will be wrong for some of 
the anomalous  differences. Whether  or not any par- 
t icular method will work with real data is not easy 
to predict. However, since there are very few 
occasions when real observed data cannot  be used, 
we would advocate their use whenever  possible. If 
this is not possible then, as can be seen from Table 
4, it is possible to s imulate  errors in a more compli-  
cated way that gives data with characteristics compar-  
able to those of  observed data - inc luding giving 
anomalous  differences with the wrong sign. 

We thank Hao Quan  for providing the x(h)  Fourier  
coefficients from the I P~l map and also Eleanor  
Dodson for the FFT routine. Finally we are grateful 
to the Science and Engineer ing Research Counci l  for 
its generous support.  
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Abstract 

By use of  appropr ia te  algebraic formulas,  i l lustrations 
are given of  several characteristics of  one-wavelength 
anomalous-d ispers ion  data, for the case that one 
p redominan t  type of anomalous-scat ter ing atom is 

present. It is shown that, when the structure of the 
anomalous  scatterer is known,  some simple algebraic 
formulas may be used to generate initial values of 
many phases associated with a macromolecu la r  struc- 
ture. In some cases, there may be enough phases 
de termined to permit  further ref inement and 
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